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Abstract

Carbon nanotubes (CNTs) are currently used in numerous industrial and biomedical applications. 

Recent studies suggest that workers may be at risk of adverse health effects if they are exposed to 

CNTs. A National Institute for Occupational Safety and Health (NIOSH) survey of the 

carbonaceous nanomaterial industry found that 77% of the companies used respiratory protection. 

Elastomeric half-mask respirators and filtering facepiece respirators (FFRs) are commonly used. 

Although numerous respirator filtration studies have been done with surrogate engineered 

nanoparticles, such as sodium chloride, penetration data from engineered nanoparticles such as 

CNTs are lacking. The aims of this study were to develop a new CNT aerosol respirator testing 

system and to determine multi-walled CNT (MWCNT) penetration through FFRs.

A custom-designed CNT aerosol respirator testing system (CNT-ARTS) was developed which 

was capable of producing a sufficient amount of airborne MWCNTs for testing of high efficiency 

FFRs. The size distribution of airborne MWCNTs was 20–10,000 nm, with 99% of the particles 

between 25 and 2840 nm. The count median diameter (CMD) was 209 nm with a geometric 

standard deviation (GSD) of 1.98. This particle size range is similar to those found in some work 

environments (particles ≤6000 nm). The penetration of MWCNTs through six tested FFR models 

at two constant flow rates of 30 and 85 LPM was determined. Penetration at 85 LPM (0.58–2.04% 

for N95, 0.15–0.32% for N99, and 0.007–0.009% for P100 FFRs) was greater compared with the 

values at 30 LPM (0.28–1.79% for N95, 0.10–0.24% for N99, and 0.005–0.006% for P100 FFRs). 

The most penetrating particle size through all six tested FFR models was found to be in the range 

of 25–130 nm and 35–200 nm for the 30-LPM and 85-LPM flow rates, respectively.
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1. Introduction

Carbon nanotubes (CNTs) are currently used in numerous industrial and biomedical 

applications, including electron field emitters, conductive plastics, semiconductor devices 

(Wang et al., 2011a, 2011b; Endo et al., 2008), chemical sensors and catalysts (McKinney et 

al., 2009), biosensors, and medical devices (Endo et al., 2008; Chakravarty et al., 2008). The 

concern about worker exposure to CNTs arises from results of animal toxicological studies. 

Several studies in rodents have shown: (1) acute pulmonary inflammation and interstitial 

fibrosis observed in CNT-exposed animals in subchronic studies (Shvedova et al., 2008; 

Porter et al., 2010) and (2) an equal or greater potency of CNTs compared to other inhaled 

particles known to be hazardous to exposed workers (crystalline silica and asbestos) in 

causing adverse lung effects (Shvedova et al., 2005; Muller et al., 2005). Animal 

toxicological evidence suggests that the potential for a wide range of human health effects 

which could result from exposure to CNTs (NIOSH-161A, 2010; Poland et al., 2008).

The number of carbon layers in nanotubes varies from one layer in single-walled CNTs 

(SWCNTs) to many layers in multi-walled CNTs (MWCNTs). Although CNTs come in a 

variety of types, they all tend to form large agglomerates (bulk powder) due to their fibrous 

geometry and van der Walls forces; therefore, dispersion of airborne CNTs in a respirable 

size plays a significant role in CNT studies. Researchers have developed different methods 

to disperse CNTs, including mechanical agitation methods (Maynard et al., 2007; Mitchell et 

al., 2007), acoustic methods (Baron et al., 2008; McKinney et al., 2009), atomizers (Seto et 

al., 2010), and electrosprays (Ku & Kulkarni, 2009; Wang et al., 2011b). However, 

questions have arisen as: (1) whether the energy associated with these CNT separation 

methods change the physical properties of CNTs compared with those found in the work 

environment, (2) whether the atomizer and electrospray dispersion methods produce uniform 

airborne CNTs when dealing with the low-solubility CNTs, or (3) whether these dispersion 

methods are able to produce a sufficient amount of airborne CNTs with a controlled degree 

of agglomeration for testing of high efficiency filtering facepiece respirators (FFRs).

It has been suggested that workers may be at risk for exposure to CNT particles during the 

manufacture, handling, and cleanup of CNT materials (Mitchell et al., 2007; Porter et al., 

2010). Recently, a NIOSH survey of the carbonaceous nanomaterial industry found that 

77% of the companies used some respiratory protection (Dahm et al., 2011). Elastomeric 

half-mask respirators and FFRs are commonly used (Dahm et al., 2011). The NIOSH 

Current Intelligence Bulletin recommends workers to use and select respirators when 

working with nanoparticles (NIOSH-161A, 2010).

Although numerous respirator filtration studies have been done with surrogate engineered 

nanoparticles, such as sodium chloride, reports on the penetration of airborne CNTs through 

FFRs are lacking. These previous studies were used solvents as aerosol generator fluids 

(suspension solutions), targeted toward generating spherical particles, and measured for 

particles in the range of 100–400 nm mobility diameters (Wilkes, 2002; Rengasamy et al., 

2009). Thus, development of a new aerosol respirator testing system to determine elongated-

shape CNT penetration through FFRs or other respirator filters and to support the current 

NIOSH respirator recommendations is needed.
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The aim of this study was to develop a new test system to measure the filtration performance 

of FFRs using airborne MWCNTs. The new system was designed to achieve four specific 

research objectives: (1) to be capable of generating airborne MWCNT particles continuously 

and uniformly, with a respirable MWCNT aerosol similar in size to those found in the 

workplace (particle size ≤6 μm; Han et al., 2008; McKinney et al., 2009), (2) to produce a 

sufficient amount of airborne MWCNTs for testing of high efficiency FFRs [a P100-FFR 

penetration level is ≤0.03% (NIOSH-42 Part 84, 1995), so a minimum MWCNT 

concentration required for P100-FFR penetration test is ≥3 × 104 particles/cm3], (3) to be 

able to maintain a stable desired concentration during a test period, and (4) to be capable of 

performing MWCNT filter penetration tests.

2. Materials and methods

2.1. Equipment and supplies

2.1.1. CNT aerosol respirator testing system—A custom-designed CNT aerosol 

respirator testing system (CNT-ARTS) consists of a CNT aerosol generation system, a 

particle detector system, and a penetration measurement system (Fig. 1). The CNT aerosol 

generation system consists of a 6-jet Collison nebulizer (BGI, Waltham, MA), a stir plate, a 

micro-stir bar (SBM-2003-MIC; 20-mm length and 3-mm diameter), a respirable cyclone 

(Model: GK4.162; BGI), a diffusion dryer, a Kr-85 aerosol neutralizer (Model 3054, TSI 

Inc., Shoreview, MN), and a Condensation Particle Counter (CPC, model 3776; TSI) used to 

monitor the output CNT concentration. A compressed air supply for the generator was 

filtered with a high efficiency particulate air (HEPA) filter. The particle detector system 

consists of a Scanning Mobility Particle Sizer (SMPS; model 3080; TSI; detection range: 

0.01–1 μm), including a CPC (model 3776) and an Aerodynamic Particle Sizer (APS, Model 

3321, TSI; detection range: 0.5–20 μm). The penetration measurement system consists of an 

exposure chamber system, a leakage test system, and a constant air flow system. The 

exposure chamber system consists of a 48-L acrylic exposure chamber (Vandiver 

Enterprises, Zelienople, PA), a humidity/temperature sensor, a circulation fan, a humidity/

temperature controller, and a 1-cm diameter exhaust port (one-way airflow valve; Model 

#123, TSI) to remove excess air from the chamber during particle generation and sampling. 

The width, depth, and height of the exposure chamber is 36 cm × 36 cm × 37 cm, 

respectively so that a head form with an FFR could be placed inside the chamber for the 

penetration test and be easily disassembled for cleaning. Because of CNT aerosol safety 

concerns, the exposure chamber was set up inside a secondary acrylic containment chamber 

(100 cm × 100 cm × 80 cm as width, depth, and height, respectively) which also has a 9-cm 

diameter exhaust port, containing a HEPA filter and an internal fan to direct air flow 

(Electro-Tech System, Glenside, PA). The leakage test system consists of a plaster-material 

head form and Series 1101 breathing simulator (Hans Rudolph). The constant air flow 

system consists of a head form with an FFR, a mass flow meter (Model #4045, TSI), a 

HEPA filter, and an in-house vacuum with an air regulator to control the air flow rate.

2.1.2. MWCNT samples—The MWCNT bulk materials used in this study were obtained 

from the Nanostructured & Amorphous Materials Inc. (MWNT-1227YJS, lot 1227–041709; 

Houston, TX) and used without further purification. The average width of the stock 
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MWCNTs is between 30 and 80 nm, while the average length is between 0.5 and 2 μm. 

MWCNTs were selected for this study based on their worldwide high-volume production 

with about 300 t/year (WTEC, 2007) and the worker exposure concern regarding the 

asbestos-like pathogenicity of MWCNTs (Poland et al., 2008).

2.1.3. Respirators—Two models of each N95, N99, and P100 series (total six tested FFR 

models) were selected randomly from among those models tested previously (Vo & Shaffer, 

2012) in our laboratory (Table 1). These models are NIOSH-approved FFR models and are 

commonly used by workers in the carbonaceous nanomaterial industry (Dahm et al., 2011). 

These FFRs had multilayer structure, and the main layers of these FFRs were composed of 

polypropylene fibers with electrical charge; however, each FFR model has different 

characteristics, such as number of layers, thickness, and different hydrophilic and 

hydrophobic fiber materials.

2.2. Generation of airborne MWCNT in CNT-ARTS

In order to achieve the study objectives of generating airborne-form MWCNTs in the 

respirable-size, producing a sufficient amount of airborne MWCNTs for testing of high 

efficiency FFRs, and maintaining a stable desired concentration during a test period, a new 

CNT aerosol generation system was designed and set up as illustrated in Fig. 2. A nebulizer 

coupled to a micro-stir bar/stir plate was used to generate airborne MWCNTs. The micro-

stir bar was used to excite MWCNT samples and disperse them from bulk-powder materials 

without using any solvents to disperse the bulk MWCNTs in the nebulizer. The 7-LPM air 

to nebulizer was used to carry small MWCNT particles out of the nebulizer cylinder, while 

larger particles tended to stay in the lower portion of the cylinder until they were dispersed. 

A cyclone was used to remove larger particles to ensure all airborne MWCNTs produced 

were in the respirable-sized range. The output concentration of the airborne MWCNTs was 

monitored using a CPC and controlled to maintain a stable desired concentration during a 

test period by adjusting the speed level of the stir bar.

During generator operation, 1.0 g of bulk MWCNTs and a small stir bar were placed inside 

the nebulizer cylinder. After the head form with the FFR sealed to it was set up, the chamber 

was closed and internal fans were turned on. Then, compressed air valves were opened and 

particles were generated. The airflow to the nebulizer was set to 7 LPM and the stir plate 

was operated at a low speed to gently disperse the CNTs. The MWCNT particles passed 

through a cyclone to establish the size cut of particles ≥10 μm before they were directly 

mixed with clean dry air to reach a final designated MWCNT concentration. Then the 

airborne MWCNTs passed through diffusion dryer to enhance the removal of liquid vapors. 

Before entering the 48-L exposure chamber, the airborne MWCNTs passed through a Kr-85 

neutralizer. MWCNT particles were continuously generated and passed into the chamber, 

while the chamber conditions were maintained at 23 °C and 35% RH.

2.3. Characterization of airborne MWCNT in CNT-ARTS

2.3.1. Output MWCNT concentration during a test period—To investigate a stable 

concentration, the CPC with a controlled flow rate of 1.5 LPM was used to measure the 

MWCNT concentration in the exposure chamber for a 30-min test period. Normally, the 
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CPC was used to monitor the output MWCNT concentration in the chamber during particle 

generation.

2.3.2. MWCNT uniformity in the exposure chamber—The APS (Fig. 1, 5A) and 

SMPS, including the CPC (Fig. 1, 5B), were used to investigate the MWCNT uniformity in 

the chamber at 9 different chamber locations designated as: back-left top (BLT), front-left 

top (FLT), back-right top (BRT), front-right top (FRT), center (C), back-left bottom (BLB), 

front-left bottom (FLB), back-right bottom (BRB), and front-right bottom (FRB). The 

combination of the SMPS and APS data into a single size distribution (20–10,000 nm) was 

performed according to the method of Khlystov et al. (2004) by calculating the ratio of the 

overlapping size range between 600 and 900 nm. This method allows measuring the 

concentration and size distribution of airborne MWCNT particles in a wide size range from 

20 to 10,000 nm into a single plot, and was used for all APS and SMPS data set from this 

study.

2.3.3. Characterization of upstream and downstream airborne MWCNTs—
Upstream airborne MWCNTs were characterized using the same procedure as described in 

the “MWCNT uniformity in the exposure chamber” section. The concentration and size 

distribution of airborne MWCNTs outside each tested FFR (near the center) were used for 

this test and designated as upstream particles.

The concentration and size distribution of airborne MWCNTs inside each tested FFR were 

measured for each FFR model. The MWCNT particles inside each tested FFR were 

designated as downstream particles.

2.4. FFR penetration against airborne MWCNT particles

2.4.1. Leakage test—Before each penetration experiment, a leakage test was conducted 

by using a breathing system (Fig. 1, 3B and 3C). An FFR was sealed with silicone to the 

face of the head form so that no leakage occurred between the face and the inner filter 

surfaces. In addition, each N99 and P100 FFR, containing an exhalation valve, was also 

sealed with silicone to avoid any leakages from the exhalation valve (both N95 FFR models 

did not have an exhalation valve). The head form was connected to a breathing simulator 

using a plastic breathing tube. Then, the silicone sealant surface was covered by a bubble-

producing liquid, and a leakage test was conducted at a 30-LPM (1.2 L/stroke × 25 strokes/

min) waveform to determine if the exhaled air caused bubble formation due to leakages. If 

any leaks were detected, additional silicone was applied to the seal and the leak check was 

repeated.

2.4.2. FFR penetration—Penetration for sealed FFRs was measured using the SMPS and 

APS. The MWCNT penetration through the FFR was determined based on the downstream 

and upstream concentrations recorded in each SMPS-APS experimental data set. The 

penetration experiments were carried out using the penetration measurement system at two 

constant flow rates for each model: 30 LPM (which simulates inhalation at a normal work 

rate; Clayton et al., 2002) and 85 LPM (which simulates inhalation at a heavy work rate; 

Clayton et al., 2002).
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The penetration outputs for each model were reported as: (1) penetration as a function of 

individual particle size and (2) total penetration of all particle sizes. Penetration (P in %) as 

a function of individual particle size was calculated as a ratio of the downstream and 

upstream concentrations:

(1)

where Cdown is the downstream CNT concentration (mean particles that penetrated the FFR 

of each model) at each particle size; Cup is the upstream CNT concentration at each particle 

size.

The total penetration (Pt in %) of all particle sizes provided particle penetration across the 

full size range measured, and was calculated as:

(2)

where ΣCdown is the total downstream MWCNT concentrations and ΣCup is the total 

upstream MWCNTs.

2.5. Data analysis

All tests from this study were replicated three times. The mean, standard deviation, the 

coefficient of variation (CV) values, and normal data distribution were calculated using 

Microsoft Excel 2010 software (Microsoft Corporation, Redmond, WA). P-values of <0.05 

were considered significant. To compare the percent penetration of MWCNT particles 

through each FFR model, obtained from both the constant flow rates of 30 and 85 LPM, 

paired t-tests with two-tailed distribution were run, also using Microsoft Excel 2010.

3. Results

3.1. Characterization of airborne MWCNT in CNT-ARTS

The average MWCNT concentrations in the “output MWCNT concentration during a test 

period” experiment were found to be 2.35 × 105 (±8.01 × 103) particles/cm3 (n=3; Fig. 3). 

The results show that the CNT-ARTS was capable of maintaining a stable MWCNT 

concentration during a test period. The CNT aerosol generator was able to produce a 

sufficient amount of airborne MWCNTs (up to 2.78 × 105 particles/cm3; Figs. 4 and 5) for 

testing of high efficiency FFRs.

The average size distributions and concentrations of airborne MWCNTs at different 

chamber locations were determined and are shown in Fig. 4. The average concentration of 

airborne MWCNT particles ranged from 2.52 to 2.78 × 105 particles/cm3 (n=3). All CVs at 

different chamber locations were found to be ≤1.93%. The results indicate that the MWCNT 

concentrations and size distributions were relatively uniform throughout the chamber.

The size distribution and concentration of upstream airborne MWCNTs were characterized 

using the SMPS and APS. The size distribution was in the range of 20–10,000 nm, with 99% 

of particles centered between 25 and 2840 nm (Fig. 5). The count median diameter (CMD) 

was 209 nm with a geometric standard deviation (GSD) of 1.98 and a mode of 260 nm.
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The size distribution of downstream MWCNTs at the constant flow rate of 30 LPM was 

determined for each FFR model, ranging from 20 to 4300 nm, with 99% of particles 

centered between 25 and 1486 nm for all FFR models (Fig. 5). The CMD was found to be in 

the range of 110–180 nm with GSD in the range of 1.40–1.89 for all six tested FFR models.

3.2. MWCNT penetration

Percent penetration values for the six tested FFR models at constant flow rates of 30 and 85 

LPM as a function of individual particle size are shown in Fig. 6. For the 30 LPM, average 

percent penetrations were highest for the N95 (0.28–1.79%), followed by N99 FFRs (0.10–

0.24%) and P100 (0.005–0.006%). The paired t-tests ran for Gerson N95 and North N95 

models revealed P-values of 0.002 and 0.001 for the flow rates of 30 and 85 LPM, 

respectively. This indicates that penetrations were significantly different between Gerson 

N95 and North N95 models; however, penetrations were not significantly different between 

Moldex N99 and Willson N99 (P≥0.06) or 3M P100 and Sperian P100 models (P≥0.34). 

Fig. 6 also shows that the penetration of the N95 North approached the performance of the 

Moldex N99 model over particle sizes with P-values of 0.79 and 0.33 for the flow rates of 

30 and 85 LPM, respectively. In general, different FFR models yielded different MWCNT 

penetrations. Mean particle penetration at 85 LPM (0.58–2.04% for N95, 0.15–0.32% for 

N99, and 0.007–0.009% for P100 FFRs) was greater compared with the values at 30 LPM 

(0.28–1.79% for N95, 0.10–0.24% for N99, and 0.005–0.006% for P100 FFRs) for all six 

FFR models (Fig. 6). Paired t-tests ran for each N95 model compared penetration at flow 

rates of 30 and 85 LPM indicate a significant difference between the two flow rates for a 

given model: P=0.005 for Gerson N95 and P=0.0121 for North N95. However, penetrations 

were not significantly different between the two flow rates for each N99 or P100 model (all 

P-values ≥0.06). The most penetrating particle size (MPPS) through all six FFR models at 

the flow rate of 30 LPM was found to be in the range of 25–130 nm (30–130, 30–100, 30–

90, 25–130, 38–100, and 40–120 nm for Gerson N95, North N95, Moldex N99, Willson 

N99, 3M P100, and Sperian P100, respectively; Fig. 6), while the MPPS at 85 LPM was 

found to be in the range of 35–200 nm (45–200, 40–190, 35–135, 40–190, 48–185, and 50–

185 nm for Gerson N95, North N95, Moldex N99, Willson N99, 3M P100, and Sperian 

P100, respectively; Fig. 6).

The total penetration of all particle sizes at constant flow rates of 30 and 85 LPM are shown 

in Fig. 7. The results indicate that the penetrations at 85 LPM were greater compared with 

the values at 30 LPM for all FFR models. Comparison of the results between two methods 

of calculating penetration indicated that the total penetration was consistently higher than 

those in the penetration as a function of individual particle size for all FFR models.

4. Discussion

The CNT-ARTS was capable of generating airborne MWCNT particles continuously and 

uniformly in a sufficient amount for testing of high efficiency FFRs. With a cyclone and a 

low air flow rate to nebulizer, the CNT aerosol generator was able to produce airborne 

MWCNTs in a respirable range similar in size to those found in work environments (particle 

size ≤6000 nm; Maynard et al., 2004; McKinney et al., 2009). These results indicate that the 
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CNT-ARTS was capable of generating airborne MWCNT particles with a controlled degree 

of agglomeration.

The CNT-ARTS was also capable of producing a stable desired MWCNT concentration 

during a test period by adjusting the speed level of the stir bar. MWCNT concentration 

could be controlled by other test parameters, such as varying the air-flow rate to the 

nebulizer or changing the volume of dilution air; however, to keep constant exposure-

chamber conditions (temperature and RH) and to minimize the amount of MWCNTs used, 

the output MWCNT concentration was only controlled by adjusting the speed level of the 

stir bar.

Comparison of the results at different chamber locations indicated that the new test system 

not only generated a designated particle size, but also generated similar particle counts 

throughout the chamber. The use of the CNT-ARTS also allowed us to solve three major 

problems of dispersing CNTs: (1) the low energy associated with this CNT separation 

method (using stir plate/stir bar) did not change the physical properties of CNTs because the 

output particle sizes were similar to those found in the work environments (particle size 

≤6000 nm), (2) using powder-form CNTs (no solvents were used as generator fluids) 

allowed us to produce uniform CNT particles without dealing with the low-solubility CNTs, 

and (3) the new test system was able to produce a sufficient amount of airborne CNTs with a 

controlled degree of agglomeration for testing of high efficiency FFRs.

The size difference between upstream (20–10,000 nm) and downstream (20–4300 nm) 

MWCNTs indicated that airborne MWCNTs with the particle size >4300 nm were 

completely captured on the fibers of the FFRs for all six FFR models. Only MWCNTs with 

a particle size ≤4300 nm were able to penetrate through the FFR. In general, mechanisms for 

MWCNT capture included diffusion, interception, electrostatic attraction and inertial 

impaction, because gravitational settling is negligible for nanoparticles (Seto et al., 2010). 

Although the capture efficiency of MWCNT particles with elongated shapes (ratio of length 

to diameter >3:1) due to diffusion is similar to the capture efficiency of spherical particles 

such as sodium chloride with the same electrical mobility size (Kim et al., 2009), the capture 

efficiency of the elongated MWCNTs due to interception and inertial impaction would be 

dominant mechanisms for the MWCNTs with their curling/bending shape (Wang & Pui, 

2009; Wang et al., 2011a, 2011b) and their long rotation time (aspect ratios between the 

geometric length and the diameter of MWCNTs are in the range of 6–67).

The results of the penetration as a function of individual particle size at flow rates of 30 and 

85 LPM show that different FFR models yielded different MWCNT penetrations, with 

larger penetrations observed for each model at the higher flow rate. The penetration data 

also show that the particle size increased with increasing flow rate. Average percent 

penetrations for both 30-LPM and 85-LPM experiments had a similar trend in the 

penetration and were highest for the N95 FFRs, followed by N99 and P100 FFRs. The filter 

properties (polypropylene fibers and electrical charges), numbers of filter layers, and total 

filter thickness would contribute to this penetration trend among the three different FFR 

series: N95, N99, and P100. For different FFR models within each FFR series, the results 

show that penetrations were significantly different between Gerson N95 (1.79%) and North 
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N95 (0.28%) models. A possible explanation for the different penetrations is that the North 

N95 FFR model has a hydrophobic outer layer, while Gerson N95 model has a hydrophilic 

outer layer. However, penetrations were not significantly different between Moldex N99 and 

Willson N99 or 3M P100 and Sperian P100 models. A possible explanation for the similar 

penetrations is that both Moldex N99 and Willson N99 or 3M P100 and Sperian P100 

models have the same number of filter layers and hydrophilic/hydrophobic layer 

characteristics.

The penetration data also show that the particle size increased with increasing flow rate. 

Some previous studies on mechanical filters found that the MPPS was in the size range of 

100–400 nm for inert nanoparticles, such as sodium chloride aerosol (Howard, 2003). 

However, we found that the MPPS for MWCNTs penetrated through the FFRs, which have 

electret filters, the most common type of filter used in respirators on the market today, was 

in the range of 25–130 nm and 35–200 nm for the 30-LPM and 85-LPM flow rates, 

respectively. The main reason for the differences is that the particle deposition on 

mechanical filters occurs because of diffusion, direct interception, and inertial impaction, 

while the electret filters are composed of charged fibers. This property leads to a 

considerable shift of the maximum penetration toward smaller particles because the 

additional polarization force has a great importance in the process of the particle deposition 

on fibers. Similar MPPS results were reported by other NIOSH researchers who found that 

the MPPS range for electret filters is between 30 and 100 nm for inert nanoparticles such as 

sodium chloride aerosol (Rengasamy et al., 2007, 2009, 2011). The reason NIOSH tests 

respirators using inert nanoparticles such as sodium chloride is that the filtration 

performance would likely be lower for spherical particles than for elongated CNTs. The 

results of this paper support continued use of the current NIOSH respirator 

recommendations for protection against nanoparticles.

Comparison of the results between the two methods of calculating penetration indicated that 

the total penetration was consistently higher than those in the penetration as a function of 

individual particle size for all FFR models. The results from this study also indicate that the 

P100-class respirators had higher levels of laboratory filtration performance compared to 

N95-class respirators for both methods of calculating penetration.

5. Study limitations

In this study, the FFRs were sealed to the face of the head form and exhalation valves were 

sealed, so the efficiency determined during experiments was defined as the efficiency of the 

FFR filter material. The actual field-measured penetration may be higher if there are some 

leakages between the wearer’s face and the FFR or any leakages from the FFR exhalation 

valve. It must also be noted that in this study only limited FFR models were tested and that 

other models may perform better or worse than those selected.

6. Conclusions

A CNT aerosol respirator testing system was successfully designed, constructed, and used to 

perform FFR penetration test. This system was capable of (1) generating airborne MWCNT 

particles continuously, with a respirable MWCNT aerosol similar in size to those found in 
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the workplace, (2) producing a sufficient amount of airborne MWCNTs for testing of high 

efficiency FFRs, (3) maintaining a stable desired concentration during a test period, and (4) 

performing MWCNT penetration tests. This study found that penetration of MWCNT at 85 

LPM was greater compared with the values at 30 LPM. The most penetrating particle size 

through all six tested FFR models was found to be in the range of 25–130 nm and 35–200 

nm for the 30-LPM and 85-LPM flow rates, respectively. Based on these promising results, 

CNT-ARTS could find utility in measuring filter penetration for other types of powder-form 

engineered nanoparticles (e.g., SWCNT, carbon black, metal oxides, etc.).
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Fig. 1. 
CNT-ARTS: air supply with HEPA filters (1); CNT aerosol generator (2A); air inlet (2B); 

cyclone (2C); dilution air (2D); diffusion dryer (2E); neutralizer (2F); exposure chamber 

(3A); head form (3B); breathing simulator (3C); exhaust port (3D); CPC (3E); secondary 

containment (4A); ventilation air inlet (4B); ventilation air outlet (4C); APS (5A); SMPS 

(5B).
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Fig. 2. 
CNT aerosol generation system.
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Fig. 3. 
Average MWCNT concentration (n=3) at the center of the exposure chamber during a 30-

minute test period.
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Fig. 4. 
Size distribution of the airborne MWCNTs at different chamber locations measured using 

the SMPS and APS.
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Fig. 5. 
Size distribution of upstream and downstream MWCNTs at the 30-LPM flow rate measured 

using the SMPS and APS (A–F: downstream MWCNTs; n=3 for each model).
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Fig. 6. 
Mean MWCNT penetration (count penetration; n=3 for each model at each flow rate) 

through the tested FFRs as a function of individual particle size measured using APS and 

SMPS.
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Fig. 7. 
Total MWCNT penetration of all particle sizes through the tested FFRs at the flow rates of 

30 and 85 LPM (n=3 for each FFR at each flow rate): N95-A: Gerson N95; N95-B: North 

N95; N99-A: Moldex N99; N99-B: Willson N99; P100-A: 3M P100; P100-B: Sperian P100.

Vo and Zhuang Page 19

J Aerosol Sci. Author manuscript; available in PMC 2015 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vo and Zhuang Page 20

Table 1

FFRs used in the penetration study.

FFR series FFR models FFR information

N95 Gerson 1730 Manufacturer: www.GersonCo.com
Middleboro, MA
1-800-225-8623

North 7130 Manufacturer: www.northsafety.com
Cranston, RI 02921
1-800-430-4110

N99 Moldex 2310 Manufacturer: www.moldex.com
Culver City, CA 90232
1-310-837-6500

Willson N1139 M/L Manufacturer: Willson
Santa Ana, CA 92704
1-800-821-7236

P100 3M 8293 3M Canada Company
P.O. Box 5757
London, Ontario N6A 4T1
1-651-737-6501

Sperian P1130S Retail: www.drillspot.com
1-720-204-3660
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